Compiling Asterisk

Once you’ve compiled and installed the zaptel and libpri packages (if you need them), you can move on to Asterisk. This section walks you through a standard installation and introduces some of the alternative make arguments that you may find useful.

Standard Installation

Asterisk is compiled with gcc through the use of the GNU make program. To get started compiling Asterisk, simply run the following commands (replace version with your version of Asterisk):

# cd /usr/src/asterisk-version
# make clean
# ./configure
# make menuselect
# make install
# make samples   

Be aware that compile times will vary between systems. On a current-generation processor, you shouldn’t need to wait more than five minutes. At AstriCon (, someone reported successfully compiling Asterisk on a 133 MHz Pentium, but it took approximately five hours. You do the math.

Run the make samples command to install the default configuration files. Installing these files (instead of configuring each file manually) will allow you to get your Asterisk system up and running much faster. Many of the default values are fine for Asterisk. Files that require editing will be explained in future chapters.


If you already have configuration files installed in /etc/asterisk/ when you run the make samples command, .old will be appended to the end of each of your current configuration files, for example, extensions.conf will be renamed extensions.conf.old. Be careful, though, because if you run make samples more than once you will overwrite your original configuration files!

The sample configuration files can also be found in the configs/ subdirectory within your Asterisk sources directory.

If you’re using a system that makes use of the /etc/rc.d/init.d/ or /etc/init.d/ directories, you may wish to run the make config command as well. This will install the startup scripts and configure the system (through the use of the chkconfig command) to execute Asterisk automatically at startup:

          # make config

Alternative make Arguments

There are several other make arguments that you can pass at compile time. While some of these will be discussed here, the remainder are used internally within the file and really have no bearing or use for the end user. (Of course, new functions may have been added, so be sure to check the Makefile for other options.)

Let’s take a look at some useful make arguments.

make clean

The make clean command is used to remove the compiled binaries from within the source directory. This command should be run before you attempt to recompile or, if space is an issue, if you would like to clean up the files.

make distclean

The make distclean command is used to remove the compiled binaries and to clean the source directory back to its original state after being extracted from the compressed archive.

make update

The make update command is used to update the existing code from the Digium SVN server. If you downloaded the source code from the FTP server, you will receive a notice stating so.

make webvmail

The Asterisk Web Voicemail script is used to give a graphical interface to your voicemail account, allowing you to manage and interact with your voicemail remotely from a web browser.

When you run the make webvmail command, the Asterisk Web Voicemail script will be placed into the cgi-bin/ directory of your HTTP daemon. If you have specific policies with respect to security, be aware that it uses a setuid root Perl script. This command will install only on a CentOS or Fedora box, as other distributions may have different paths to their cgi-bin/ directories. (This, of course, can be changed by editing the HTTP_CFGDIR variable in the Makefile at line 133 at the time of this writing.)

make progdocs

The make progdocs command will create documentation using the doxygen software from comments placed within the source code by the developers. You must have the appropriate doxygen software installed on your system in order for this to work. Note that doxygen assumes that the source code is well documented, which, sadly, is not always the case, although much work was published since the first edition of this book! The information contained within the doxygen system will be useful only to developers.

make config

The make config command will install Red Hat-style initialization scripts, if the /etc/rc.d/init.d or /etc/init.d directories are found to exist. If they do exist, the scripts are installed with file permissions equal to 755. If the script detects that /etc/rc.d/init.d/ exists, the chkconfig --add asterisk command will also be run to cause Asterisk to be started automatically at boot time. This is not the case, however, with distributions that only use the /etc/init.d/ directory. Running make config will not do anything to an already running Asterisk process, or start one if it’s not running.

This script currently is really only useful on a Red Hat-based system, although initialization scripts are available for other distributions (such as Gentoo, Mandrake, and Slackware) in the ./contrib./init.d/ directory of your Asterisk source directory.

Using Precompiled Binaries

While the documented process of installing Asterisk expects you to compile the source code yourself, there are Linux distributions (such as Debian) that include precompiled Asterisk binaries. Failing that, you may be able to install Asterisk with the package managers that those distributions of Linux provide (such as apt-get for Debian and portage for Gentoo).[47] However, you may also find that many of these prebuilt binaries are quite out of date and do not follow the same furious development cycle as Asterisk.

Finally, there do exist basic, precompiled Asterisk binaries that can be downloaded and installed in whatever Linux distribution you have chosen. However, the use of precompiled binaries doesn’t really save much time, and we have found that compiling Asterisk with each install is not a very cumbersome task. We believe that the best way to install Asterisk is to compile from the source code, so we won’t discuss prebuilt binaries very much in this book―and besides, don’t you want to be l33t?[48] In the next chapter, we’ll look at how to initially configure Asterisk and several kinds of channels.

[47] Gentoo doesn’t actually use a precompiled binary, but rather pulls the source from a repository, and builds and installs the software using its own package management system. But the version you get is still dependant upon the maintainers packaging it for you, when you could simply build it yourself!

[48] l33t is a funny way of saying “elite,” known as leetspeak (computer slang). Even more funny is a well-written, serious article by Microsoft about leetspeak at